Identify the potential aggregates transaction around Tabriz and ways to reduce their negative effects on concrete properties

Document Type : Original Article

Authors

1 BHRC Scientific Board Member

2 Expert

Abstract

Since the aggregates generally occupy 60% to 75% of the concrete volume, they strongly influence the concrete’s physical and chemical properties. Aggregate, not only can affect the strength of concrete but also their properties greatly affect the durability and structural behavior of concrete. In fact, aggregates are not entirely neutral and concrete performance is influenced by physical and chemical properties of aggregates. One of the most important problems attributed to aggregate of Tabriz are reported to possibly deleterious alkali silica reaction between the hydroxyl ions (OH−) in the pore solution and reactive silica in the aggregate over the time. So, investigation of alkali-silica reaction potential for aggregate in this area is so invaluable because of high consumption of these suspicious materials in the construction of varied hydraulic structures.
In present research, the Potential of Alkali Reactivity for aggregates correspond to three mines in Tabriz area was investigated by Petrographic Examination (according to ASTM C295) and Mortar Bar Test (according to ASTM C1260). The results clearly show that current aggregates exhibit high reactivity and the use of pozzolanic cement for controlling alkali silica reaction (ASR) was not effective.

Keywords

Main Subjects


[1] Diamond, S., et al. 1981, On the physics and chemistry of alkali–silica reactions, 5th Conf. Alkali Aggregate Reaction in Concrete, pp. 1–11.
[2] Buck, A. D.,  Houston, B. J., Pepper, L., 1953,   Effectiveness of mineral admixtures in preventing excessive expansion of concrete due to alkali-aggregate reaction, Journal of the American Concrete Institute, Vol. 30, pp. 11-60.
[3] Ramlochana, T., Thomasa, M.,  Gruberb, K. A., 2003, The effect of metakaolin on alkali-silica reaction in concrete, Cement and Concrete Research, Vol. 30, pp. 339- 344.
[4] Kashi, M. G., 2005, Mitigation of Alkali-Silica Reactivity (ASR) for Saymareh Dam Project, Soil, Rock & Structures Consulting Engineers.
[5] Stanton, T.E., 1940, Expansion of concrete through reaction between cement and aggregate, Proc. Am. Soc. Civ. Eng. Vol.  66, pp. 1781–1811.
[6] Lindgård, J.,   Andiç-Çakır. O.,  Fernandes, I.,  Rønning, T. F.,  Thomas, M. D. A., 2012, Alkali–silica reactions (ASR), Literature review on parameters influencing laboratory performance testing, Cement and Concrete Research, Vol. 42, pp. 223–243.
[7] St John, D.A., Poole, A.B., Sims, I., 1998, Concrete Petrography—A Handbook of Investigative Techniques, Arnold, U.K, p. 474.
[8] Dove, P.M., Rimstidt, J.D., 1994, Silica–water interactions, in: P.J. Heaney, C.T. Prewitt, G.V. Gibbs (Eds.), Silica: physical behaviour, geochemistry and materials applications Reviews in Mineralogy, Mineralogical Society of America, pp. 259–308.
[9] Alkali-reactivity and prevention—assessment, specification and diagnosis of alkali-reactivity, 2003,  RILEM recommended test method AAR-1, detection of potential alkali-reactivity of aggregates—petrographic method, Mater. Struct. Vol. 36, pp. 480–496.
[10] Broekmans, M.A.T.M., 2002, The alkali–silica reaction, mineralogical and geochemical aspects of some Dutch concretes and Norwegianmylonites, PhD. Thesis, in, University of Utrecht, pp. 144.
[11] Larive, C., Laplaud, A., Coussy, O., 2002, The role of water in alkali–silica reaction, in: Bérubé, M.-A., Fournier, B., Durand, B., (Eds.), 11th International Conference on Alkali– Aggregate Reaction, Québec, Canada, pp. 61–69.
[12] ویسه، سهراب، خدابنده، ناهید، 1382، شناسایی و تعیین کیفیت مواد و مصالح محلی قشم، ماهنامه قشم، سال نهم.
[13] ویسه، سهراب، 1377، سنگدانه­های واکنش‌زا با قلیایی­های خمیر سیمان، مجموعه مقالات کارگاه آموزشی آسیب­دیدگی­های سازههای بتنی، مرکز تحقیقات ساختمان و مسکن.
[14] ویسه، سهراب، خدابنده، ناهید، 1380، بررسی موردی کیفیت سنگدانه­های استان تهران برای ساخت بتن، اولین کنفرانس       بین­المللی بتن و توسعه، مرکز همایش­های صدا و سیما.
[15] Böhm, M., Baetzner, S., 2008, The effect of the alkalinity of the pore solution on ASR, in: Broekmans, M.A.T.M., Wigum, B.J., (Eds.), 13th International Conference on Alkali– Aggregate Reactions in Concrete, Trondheim, Norway, pp. 501–510.
[16] Rivard, P., Bérubé, M. A., Ollivier, J. P., Ballivy, G., 2003, Alkali mass balance during the accelerated concrete prism test for alkali–aggregate reactivity, Cem. Concr. Res., Vol. 33, pp. 1147–1153.
[17] Leemann, A., Lothenbach, B., 2008, The influence of potassium–sodium ratio in cement on concrete expansion due to alkali–aggregate reaction, Cem. Concr. Res., Vol. 38, pp. 1162–1168.
[18] Leemann, A., Lothenbach, B., 2008, The Na2O-equivalent of cement: a universal parameter to assess the potential alkali–aggregate reactivity of concrete? in: Broekmans, M.A.T.M., Wigum, B.J., (Eds.), 13th International Conference on Alkali–Aggregate Reactions in Concrete, Trondheim, Norway, pp. 909–919.
[19] Diamond, S., Barneyback, R.S., Struble, L.J., 1981, On the physics and chemistry of alkali– silica reactions, 5th International Conference on Alkali–Aggregate Reaction, Cape Town, pp. 252-222.
[20] Kollek, J.J., Varma, S.P.,  Zaris, C., 1986,  Measurement of OH− concentrations of pore fluids and expansion due to alkali–silica reaction in composite cement mortars, 8th International Congress on the Chemistry of Cement, Rio de Janeiro, pp. 183–189.
[21] Thomas, M.D.A., 1996, Review of the effect of fly ash and slag on alkali–aggregate reaction in
[22] Kagimoto, H., Inoshita, I., Kawamura, M., 2004, Threshold OH− concentration in pore solution of mortar using alkali reactive aggregates, in: M. Tang, M. Deng (Eds.), 12th International Conference on Alkali–Aggregate Reaction in Concrete, Beijing, China, pp. 728–735.
[23] Shehata, M.H., Thomas, M.D.A., 2006,  Alkali release characteristics of blended cements, Cem. Concr. Res.,  Vol. 36, pp. 1166–1175.
[24] Leemann, A., Lothenbach, B., 2008, The influence of potassium–sodium ratio in cement on concrete expansion due to alkali–aggregate reaction, Cem. Concr. Res., Vol. 38, pp. 1162–1168.
[25] Leemann, A., Lothenbach, B., 2008, The Na2O-equivalent of cement: a universal parameter to assess the potential alkali–aggregate reactivity of concrete? in: Broekmans, M.A.T.M., Wigum, B.J., (Eds.), 13th International Conference on Alkali–Aggregate Reactions in Concrete, Trondheim, Norway, pp. 909–919.
[26] Hou, X., Struble, L.J., Kirkpatrick, R.J., 2004, Formation of ASR gel and the roles of C–S–H and portlandite, Cem. Concr. Res., Vol.  34, pp. 1683–1696.
[27] Afshinnia, K., Poursaee, A., 2015, The influence of waste crumb rubber in reducing the alkali-silica reaction in mortar bars, Journal of Building Engineering, Vol. 4, pp. 231-236.
[28] Zheng, K., 2016, Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction, , Cement and Concrete Composite, Vol. 67, pp. 30–38.
[29] Thomas, M.D.A., 2011, The effect of supplementary cementing materials on alkali–silica reaction: a review, Cem. Concr. Res., Vol. 41, pp. 1224–1231.
[30] Taylor, H.F.W., 1990, Cement Chemistry, Academic Press, London, p. 491.
[31] Thomas, M.D.A., Bleszynski, R.F., 2001, The use of silica fume to control expansion due to alkali-aggregate reactivity in concrete—a review, in: Mindess, S., Skalny, J., (Eds.), Materials Science of Concrete VI, American Ceramics Society, Westerville, OH, pp. 377–434.
[32] Ahmadi, B., Shekarchi, M., 2010, Use of natural zeolite as pozzolanic material in cement and concrete composites, Cement and concrete composite, Vol. 32, pp. 134-141.
[33] Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M., 2012, An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan, Construction and Building Materials, Vol. 35, pp. 1023-1033.
[34] بلوری، آرش، حاجی آقابابایی، محمد، 1388، بررسی تاثیر میکروسیلیس بر کاهش واکنش‌زایی قلیایی سیلیسی سنگدانه‌های بتن سدهای شمیل و نیان، اولین کنفرانس بین­المللی تکنولوژی بتن، تبریز.
[35] صدقی، پژمان، 1388، واکنش قلیایی سنگدانه‌ها در بتن با نگرشی به تونل گاوشان، اولین کنفرانس ملی بتن، تهران.
[36] Mehta, P.K., 1985, Studies on chemical resistance of low water/cement ratio concretes, Cem. Concr. Res., Vol. 15, pp. 969–978.
[37] Rixom, R., Mailvaganam, N., 1999,  Chemical Admixtures for Concrete, Taylor & Francis, p. 437.
[38] Jensen, A.D., Chatterji, S., Christensen, P.,  Thaulow, N., 1984,Studies of alkali–silica reaction— part II effect of air-entrainment on expansion, Cem. Concr. Res., Vol. 14, pp. 311–314.
[39] Hagelia, P., 2004, Origin of map cracking in view of the distribution of air voids, strength and ASR-gel, in: Tang, M., Deng M., (Eds.), 12th International Conference on Alkali–Aggregate reaction in Concrete, International Academic Publishers— World Publishing Corporation, Beijing, China, pp. 870–881.
[40] Feng, X., Thomas, M.D.A., Bremner, T.W., Balcom, B.J., Folliard, K.J., 2005,  Studies on lithium
salts to mitigate ASR-induced expansion in new concrete: a critical review, Cem. Concr. Res., Vol. 35, pp. 1789–1796.
[41] Kim, T.,  Olek, J., 2016, The effects of lithium ions on chemical sequence of alkali-silica reaction, Cement and Concrete Research, Vol. 79, pp. 159–168.
[42] Thomas, M.D.A., Fournier, B., Folliard, K., Ideker, J., Shehata, M., 2006, Test methods for evaluating preventive measures for controlling expansion due to alkali-silica reaction in concrete, Cem. Concr. Res., Vol. 36, pp. 1842–1856.